The solution of $\frac{1}{2} +cosx + cos2x + cos3x + cos4x = 0$ is
$x=\frac{2n\pi}{9},n\in I,n\neq 9m,m\in I$
$x=\frac{2n\pi}{9},n\in I,n= 9m,m\in I$
$x=\frac{n\pi}{9}+\frac{\pi}{2},n\in I$
$x=\frac{2n\pi}{3}+\frac{\pi}{6},n\in I$
Find the general solution of the equation $\sin 2 x+\cos x=0$
The number of solutions to the equation $\cos ^4 x+\frac{1}{\cos ^2 x}=\sin ^4 x+\frac{1}{\sin ^2 x}$ in the interval $[0,2 \pi]$ is
The general value $\theta $ is obtained from the equation $\cos 2\theta = \sin \alpha ,$ is
One of the solutions of the equation $8 \sin ^3 \theta-7 \sin \theta+\sqrt{3} \cos \theta=0$ lies in the interval
If the equation $2tan\ x \ sin\ x -2 tan\ x + cos\ x = 0$ has $k$ solutions in $[0,k \pi]$, then number of integral values of $k$ is-