The solution of  $\frac{1}{2} +cosx + cos2x + cos3x + cos4x = 0$ is 

  • A

    $x=\frac{2n\pi}{9},n\in I,n\neq 9m,m\in I$

  • B

    $x=\frac{2n\pi}{9},n\in I,n= 9m,m\in I$

  • C

    $x=\frac{n\pi}{9}+\frac{\pi}{2},n\in I$

  • D

    $x=\frac{2n\pi}{3}+\frac{\pi}{6},n\in I$

Similar Questions

If $\cos \,\alpha  + \cos \,\beta  = \frac{3}{2}$ and $\sin \,\alpha  + \sin \,\beta  = \frac{1}{2}$ and $\theta $ is the the arithmetic mean of $\alpha $ and $\beta $ , then $\sin \,2\theta  + \cos \,2\theta $ is equal to 

  • [JEE MAIN 2015]

If $0 \le x \le \pi $ and ${81^{{{\sin }^2}x}} + {81^{{{\cos }^2}x}} = 30$, then $x =$

  • [JEE MAIN 2021]

The number of real numbers $\lambda$ for which the equality $\frac{\sin (\lambda \alpha) \quad \cos (\lambda \alpha)}{\sin \alpha}=\lambda-1$,holds for all real $\alpha$ which are not integral multiples of $\pi / 2$ is

  • [KVPY 2015]

The number of solutions that the equation $sin5\theta cos3\theta  = sin9\theta cos7\theta $ has in $\left[ {0,\frac{\pi }{4}} \right]$ is

If $1 + \sin x + {\sin ^2}x + .....$ to $\infty = 4 + 2\sqrt 3 ,\,0 < x < \pi ,$ then