The solution of $\frac{1}{2} +cosx + cos2x + cos3x + cos4x = 0$ is
$x=\frac{2n\pi}{9},n\in I,n\neq 9m,m\in I$
$x=\frac{2n\pi}{9},n\in I,n= 9m,m\in I$
$x=\frac{n\pi}{9}+\frac{\pi}{2},n\in I$
$x=\frac{2n\pi}{3}+\frac{\pi}{6},n\in I$
If $\cos \,\alpha + \cos \,\beta = \frac{3}{2}$ and $\sin \,\alpha + \sin \,\beta = \frac{1}{2}$ and $\theta $ is the the arithmetic mean of $\alpha $ and $\beta $ , then $\sin \,2\theta + \cos \,2\theta $ is equal to
If $0 \le x \le \pi $ and ${81^{{{\sin }^2}x}} + {81^{{{\cos }^2}x}} = 30$, then $x =$
The number of real numbers $\lambda$ for which the equality $\frac{\sin (\lambda \alpha) \quad \cos (\lambda \alpha)}{\sin \alpha}=\lambda-1$,holds for all real $\alpha$ which are not integral multiples of $\pi / 2$ is
The number of solutions that the equation $sin5\theta cos3\theta = sin9\theta cos7\theta $ has in $\left[ {0,\frac{\pi }{4}} \right]$ is
If $1 + \sin x + {\sin ^2}x + .....$ to $\infty = 4 + 2\sqrt 3 ,\,0 < x < \pi ,$ then